
WR-G526 API for Linux
Introduction
This document describes the software interface to control a WR-G526 receiver system.

A WRG526 system consists of one master unit (G526e/RM or G526e/RMF) and one to eight slave
units (G526e/TM). A “combined” version is available, which incorporates one RM and one TM
into a single module (G526e/CM).

The entire system can be visualized from this block diagram:

Software Requirements
Linux WR-G526 API is implemented as shared object (wrg526api.so) that can be loaded by an
application dynamically. It can work in 32bit (i386) and 64bit (x86_64) Linux environment. In
32bit Linux the API is stored in /usr/lib directory. In 64bit Linux 32bit version of the API is stored
in /usr/lib directory and 64bit version of the API is stored in /usr/lib64 directory.

The system can be controlled by any Linux software which is able to load shared object
dynamically.

Your application must provide storage space for some data structures used by the API. This is
described in detail below.

The following section describes the usual order of events for starting a WR-G526 system, and
setting a frequency. This is followed by a summary of all API calls, with short descriptions, finally
followed by in-depth documentation for each call.

The data structures used are shown in the Appendix A, in C/C++ format.

All the functions provided by the API are thread safe and C calling conventions are used for these
functions.

Typical usage

To initialize
Reserve three scratch areas in memory:
G5_RADIO RadioList[9]; //List of each individual radio, and per-radio data
G5_STATUS g5stat={0}; //High level intermediate calculation data
G5_HW g5hw={0}; //Low level hardware settings

There is no need to initialize these variables. RadioList is fully initialized by G5_FindRadios,
g5stat and g5hw must be initialized by zeros before first call of any API function.

Call G5_FindRadios to populate the RadioList array. (Entry zero is the master, and subsequent
entries are the slaves, in alphabetic order by serial number)

Save the return value (the number of radios found), to pass as NumberOfRadios to all other calls.

Call G5_OpenRadios to open communication with all the radios.

Set the Power field of each radio in RadioList to 1, then call G5_SetPower to turn on all radios.

Call G5_SetRFAttn and G5_SetIFGain (described below), to set the initial state of the slave
radios.

To tune a new frequency
Call G5_SetFrequency to start tuning

If phase adjust is required, set the desired phase-adjust DAC value into the Phase field of each
slave radio, then call G5_SetPhase.
Loop calling G5_GetHwStatus until it indicates that all radios are idle, and both LO PLLs are
locked. (Bits 0-15 clear, bits 16 & 17 set.) (Not required for G526e/RMF)

To adjust the RF attenuator
Call G5_SetRFAttn with the desired attenuation level (0-30 dB).

To adjust the IFGAIN
Call G5_SetIFGain with 0 for normal, or 1 for -20dB gain. (This disables a 20dB amplifier).

To adjust the LO1 PLL settling speed
Call G5_SetPllSpeed with 0 for normal, or 1 for slow settling speed. Selecting “slow” will
improve the phase noise. This is automatically set back to “fast” whenever a new frequency is
tuned. (Not required for G526e/RMF)

To exit
If you want to turn all radios off, set the Power field of each radio in RadioList to 0, then call
G5_SetPower to turn off all radios.

Call G5_CloseRadios

To check error status
If any hardware errors occur, API function returns -1 and the Status fields in the RadioList array
will reveal which radio had the problem (zero ⇒ ok. Non-zero ⇒ error)

WRG526 API call summary

G5_FindRadios
int32_t G5_FindRadios(G5_RADIO *Radios uint32_t MaxNumberOfRadios,uint32_t
*RadiosFound)

Fills the user supplied array with a list of all WR-G526 class receivers connected to the PC.

The first entry will be the master receiver. Subsequent entries will be the slaves, sorted
alphabetically by serial number.

See Appendix C for a description of model IDs and hardware differences.

G5_OpenRadios
int32_t G5_OpenRadios(G5_RADIO *Radios,uint32_t NumberOfRadios)

Call once to open communications with the radios.

G5_CloseRadios
int32_t G5_CloseRadios(G5_RADIO *Radios,uint32_t NumberOfRadios)

Call once to close communications with the radios.

G5_SetPower
int32_t G5_SetPower(G5_RADIO *Radios,uint32_t NumberOfRadios)

Each radio is switched off or on, according to the matching the power field in the array.

G5_SetFrequency
int32_t G5_SetFrequency(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t Frequency,
G5_STATUS *g5stat, G5_HW *g5hw,uint8_t Force)

Set all radios to receive the specified frequency.

Debugging information is returned in g5stat, and the contents of hardware registers in g5hw.

If bit 0 of Force is 1, then all hardware modules are reprogrammed.

If bit 0 of Force is 0, then only hardware modules which have changed are written to (which
speeds up the tuning operation slightly)

If bit 7 of Force is 0, then the LO2 oscillator will be automatically toggled between high-side or
low-side mixing to avoid spurii in the output.

If bit 7 of Force is 1, then the LO2 oscillator mixing mode will be set to the opposite of the
automatic setting.

Additionally for G526e/RMF modules:

If bit 1 of Force is 1, the G5_HW data is sent directly to the hardware. The “Frequency” value is
ignored.

If bit 2 of Force is 1, then the “spur-killing” circuitry is automatically activated at frequencies
which might require it.

If bit 6 of Force is 1, the LO2 mixing mode tracks LO1 to ensure the output spectrum does not
“invert” as the receive frequency is changed.

G5_SetRFAttn
int32_t G5_SetRFAttn(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t attn,
G5_STATUS *g5stat, G5_HW *g5hw)

Sets the level of attenuation in all slave radios, from 0 to 30dB in 2dB steps.

G5_SetIFGain
int32_t G5_SetIFGain(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t gain,
G5_STATUS *g5stat,G5_HW *g5hw)

Switches off or on a 20dB amplifier in the final IF stage of all slave radios.

G5_SetPhase
int32_t G5_SetPhase(G5_RADIO *Radios,uint32_t NumberOfRadios)

Set the phase-adjust DAC on each slave radio individually.

G5_GetHwStatus
int32_t G5_GetHwStatus(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t *Status)

This allows you to check if the master’s PLLs are locked, and if any radios have been
disconnected.

G5_UpdateHw
int32_t G5_UpdateHw(G5_RADIO *Radios,uint32_t NumberOfRadios,G5_HW *g5hw,uint8_t force)

Reprogram all hardware modules with data in g5hw.

WR-G526 API call detail
G5_FindRadios

Declaration

int32_t G5_FindRadios(G5_RADIO *Radios,uint32_t MaxNumberOfRadios,uint32_t
*RadiosFound);

Parameters
Radios

[in/out] Pointer to user supplied table which is initialized by this call.
This parameter cannot be NULL.

MaxNumberOfRadios
[in] Max size of table (number of items, not bytes).

RadiosFound [out]
[out] Pointer to a variable that receives number of found G526 receivers.
This parameter cannot be NULL.

Return value
If the function success the return value is zero, otherwise if function fails the return value
is less than zero.

Description
The first entry of Radios will always be the master radio.
Subsequent entries will all be slaves, sorted alphabetically by serial number.
The Handle, Status, Power and Phase fields are all zeroed by this call.

G5_OpenRadios

Declaration

int32_t G5_OpenRadios(G5_RADIO *Radios,uint32_t NumberOfRadios);

Parameters
Radios

[in,out] Pointer to user suplied table, initialized by G5_FindRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of items in Radios table (master + slaves).

Return value
If the function success the return value is zero, otherwise if function fails the return value

is less than zero and non-zero value of Status field of items in Radios indicates
which radios had the problem.

Description
Opens communication with receivers. The function changes value of Handle field of items
in Radios. Non-zero value of Handle indicates the receiver is opened. The Handle field is
zero for all receiver which failed.

G5_CloseRadios
Declaration
void G5_CloseRadios(G5_RADIO *Radios,uint32_t NumberOfRadios);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slave).

Return value
No return value.

Description
Closed communication with receivers. It sets Handle field of items in Radios to zero.

G5_SetPower

Declaration

int32_t G5_SetPower(G5_RADIO *Radios,uint32_t NumberOfRadios);

Parameters
Radios

[in] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

Return value
If the function success the return value is zero, otherwise if function fails the return

value is less than zero and non-zero value of Status field of items in Radios indicates
which radios had the problem.

Description
The function switches power off or on of each radio, according to the Power field of items
in Radios table. To switch all the radios off or on, you have to set all the Power fields to 0
or 1 before the function is called.

G5_SetFrequency

Declaration

int32_t G5_SetFrequency(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t Frequency,
G5_STATUS *g5stat,G5_HW *g5hw,uint8_t Force);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

Frequency
[in] New receiver frequency, specified in Hertz.

g5stat
[in/out] Pointer to a G5_STATUS structure. This structure is updated to show the
internal state of the receiver.
This parameter cannot be NULL.

g5hw
[in/out] Pointer to a G5_HW structure. This structure is updated to show the raw
values written to receiver hardware. You must preserve this data, and pass it to the
next G5_SetFrequency call for optimum tuning.
This parameter cannot be NULL.

Force
[in] Bit 0 set: force reprogram of all hardware.
Bit 7 set: toggle to alternate IF2 mixing mode.

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description
Set all radios to receive the specified frequency.

G5_SetRFAttn

Declaration

int32_t G5_SetRFAttn(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t attn,G5_STATUS
*g5stat,G5_HW *g5hw);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

attn
[in] New attenuation value, from 0 to 30 dB (in 2dB steps).

g5stat
[in/out] Pointer to a G5_STATUS structure. This structure is updated to show the
internal state of the receiver.
This parameter cannot be NULL.

g5hw
[in/out] Pointer to a G5_HW structure. This structure is updated to show the raw
values written to receiver hardware.
This parameter cannot be NULL.

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description
Sets the level of attenuation in all slave radios, from 0 to 30dB in 2dB steps.

G5_SetIFGain

Declaration

int32 G5_SetIFGain(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t gain,G5_STATUS
*g5stat,G5_HW *g5hw);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

gain
[in] If zero, normal gain.
If non zero, reduce IF gain by 20fB.

g5stat
[in/out] Pointer to a G5_STATUS structure. This structure is updated to show the
internal state of the receiver.
This parameter cannot be NULL.

g5hw
[in/out] Pointer to a G5_HW structure. This structure is updated to show the raw
values written to receiver hardware.
This parameter cannot be NULL.

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description
Switches off or on a 20dB amplifier in the final IF stage of all slave radios.

G5_SetPhase

Declaration

int32_t G5_SetPhase(G5_RADIO *Radios,uint32_t NumberOfRadios);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description
Set the phase-adjust DAC on each slave radio individually. Phase field of items in Radios
has to be set before the function is called.

G5_GetHwStatus

Declaration

int32_t G5_GetHwStatus(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t *Status);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

Status
[out] Pointer to a variable that receives hardware status.
Bits 0-15 set if radio N is busy. Bit 16 set if LO1 is locked.
Bit 17 set if LO2 is locked. Bits 18-31 unused.
This parameter cannot be NULL.

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description
The function allows to check if the master’s PLLs are locked

G5_UpdateHw

Declaration

int32_t G5_UpdateHw(G5_RADIO *Radios,uint32_t NumberOfRadios,G5_HW *g5hw);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slaves).

g5hw
[in] Pointer to a G5_HW structure. All modules will be reprogrammed with data
from this structure.
This parameter cannot be NULL.

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description
The function reprograms all hardware with data from the g5hw structure.

G5_SetPllSpeed

Declaration

int32_t G5_SetPllSpeed(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t SlowSpeed,
G5_STATUS *g5stat,G5_HW *g5hw);

Parameters
Radios

[in/out] Pointer to user supplied table, as used by G5_OpenRadios.
This parameter cannot be NULL.

NumberOfRadios
[in] Number of radios (master + slave).

SlowSpeed
[in] If zero, normal settling speed on LO1. If non-zero, slower settling speed on
LO1 (less phase noise).

g5stat
[in/out] Pointer to a G5_STATUS structure. This structure us updated to show the
internal state of the receiver.
This parameter cannot be NULL.

g5hw
[in/out] Pointer to a G5_HW structure. This structure is updated to show the raw
values written to receiver hardware.
This parameter cannot be NULL.

Return value
If the function success the return value is zero, otherwise if function fails the return value is
less than zero and non-zero value of Status field of items in Radios indicates which radios
had the problem.

Description

The function sets LO1 PLL speed to normal or slow speed. Selecting slow speed will
improve the phase noise. The PLL speed is automatically set back to normal whenever a new
frequency is tuned. The function does nothing on version 1, 4, 5 and 6 radios (see Appendix C).

Appendix A: WR-G526 data structure definition – C/C++ format
#pragma pack(push,1)

typedef struct
{

char SerNum[9]; // Serial Number + NULL
uint8_t Model; // Bit0=1 => new PLL, Bit1=1 => combined
uint8_t Spare; // unused
int32_t Handle; // index into the D->Receiver[] table
uint16_t Status; // bit status
uint8_t Power; // 0=off, 1=on
uint8_t Phase; // phase adjustment (G526/TM only)

} G5_RADIO;

typedef struct
{
 uint32_t freq; // receive frequency
 uint32_t freq_hi; // (reserved to extend frequency range)
 uint32_t fbot; // bottom of current band filter
 uint32_t fbot_hi; // (reserved to extend frequency range)
 uint32_t ftop; // top of current band filter
 uint32_t ftop_hi; // (reserved to extend frequency range)
 uint8_t band; // band#
 uint8_t atten; // Attenuation in dB
 uint8_t filter; // tuneable filter value
 uint8_t flags; // 0: 1 for preamp on,
 // 1: 1 if manual filter setting,
 // 2: 0=860MHz IF, 1=480MHz IF
} WR_RF;

typedef struct
{
 uint32_t freq; // LO module output freq
 uint32_t ddsfreq; // dds output freq
 uint32_t vcofreq; // vco output freq
 uint16_t pllN; // PLL main divider
 uint16_t pllR; // PLL reference divider
 uint8_t index; // index in VCO lookup table
 uint8_t vconum; // which VCO
 uint8_t div; // always=0 => not used
 uint8_t flags; // 0: 0 for hi-side, 1 for lo-side
 // 1: settling speed
 // 2: 0 for 480MHz IF, 1 for 860 (LO2 only)
} WR_LO;

typedef struct
{
 uint8_t gain;
 uint8_t spare[3]; pad out to 4 bytes
} WR_IF;

typedef struct
{
 uint32_t refclk;
 WR_RF rf;
 WR_LO lo1;
 WR_LO lo2;
 WR_IF if2;
 uint8_t phase[8];
} G5_STATUS;

typedef struct
{

uint32_t LO1_PLL; // MASTER (i2c-0xC0)
uint32_t LO1_DDS; // MASTER (not used)
uint32_t LO2_PLL; // MASTER (i2c-0xC2)
uint32_t LO2_DDS; // MASTER (CS-IF2)
uint8_t RF_BAND; // SLAVES (SR LSB)
uint8_t RF_ATTN; // SLAVES (SR MSB)
uint8_t IF2_GAIN; // SLAVES (IF2-STB)
uint8_t LO1_PCA; // MASTER
uint32_t LO1_DACS; // MASTER
uint32_t LO2_DACS; // MASTER
uint32_t SPURA; // MASTER
uint32_t SPURB; // MASTER

} G5_HW;

#pragma pack(pop)

Appendix B: Data structure detail
This diagram illustrates which module each item in the G5_STATUS structure applies to.

Note that TM modules are all programmed with the same data, except for the phase adjust register.

This diagram illustrates which module each item in the G5_HW structure applies to.

Appendix C: Model variations
There have been several hardware variants of the WR-G526/RM as we strive to improve this
product.

The byte returned in the “Model” field of the first entry in the G5_RADIO structure indicates
which version it is. All WR-G526/TM (slave) units produced to date will return zero in this field.

Currently, bit-1 of the model field is set if this is a “combined” unit (WR-G526/SC), which
incorporates one reference module, and one tuner module into a single unit.

Bits 0, 2, and 3 indicate the version as follows:

Bits LO1 version Comments
00x0 1 (PLL only) Tuning resolution is 1 MHz
00x1 2 (DDS &

PLL)
Tuning resolution is 10 Hz.
Small steps by adjusting LO1-DDS
Fast/slow PLL settling option present, to optimise either tuning speed or
phase noise.

01x0 3 (PLL only) Tuning resolution is 10 Hz.
Small steps by adjusting LO2-DDS
Fast/slow PLL settling option present

01x1 3b (PLL only) This is a small variation on version 3
11x0 4 (PLL only,

new loop
filter)

Tuning resolution is 10 Hz.
Small steps by adjusting LO2-DDS
Fast/slow PLL settling option NOT present
(Always fast, with improved phase noise also.)
LO2 also has a new loop filter for reduced phase noise.

Unused bit combinations are reserved for future use.

Bits 4, 5, 6, and 7 are always zero, and are reserved for future use.

Note that for version 3 and later LO1, frequency steps between 1MHz multiples are implemented
by shifting LO2 slightly.

Version 2 and version 3 have a slow/fast option on the LO1 PLL. This is automatically set to
“fast” whenever a new frequency is selected to give fast stepping. Call G5_SetPllSpeed with a
parameter of 1 to select “slow” for reduced phase noise when you are stopped on a frequency.

Version 4 has an improved loop filter, which gives fast stepping with reduced phase noise at all
times. G5_SetPllSpeed has no effect on version 4 boards.

Appendix D: Output Spectrum Inversion
The WR-G526 is a dual conversion receiver.

To minimise the output of internal spurious frequencies (“birdies”), the local oscillators
automatically switch between “high-side” mixing and “low-side” mixing.

If both LOs are mixing from the same side, the output spectrum will be “normal”. If one is “high-
side” and the other is “low-side”, then the output spectrum will be “mirrored”.

The G5_STATUS structure contains a bit for each LO indicating which mixing side is being used.
This is bit 0 of lo1.flags and lo2.flags respectively. A Boolean XOR of these two bits will give 0
for true output, or 1 for mirrored output.

Appendix E: Loading API
Header file (wrg526api.h)

#ifndef __WRG526API_H__
#define __WRG526API_H__

#include <stdint.h>

#pragma pack(push,1)

typedef struct
{
 char SerNum[9];
 uint8_t Model;
 uint8_t Spare;
 int32_t Handle;
 uint16_t Status;
 uint8_t Power;
 uint8_t Phase;
} G5_RADIO;

typedef struct
{
 uint32_t freq; // receive frequency
 uint32_t freq_hi; // (reserved to extend frequency range)
 uint32_t fbot; // bottom of current band filter
 uint32_t fbot_hi; // (reserved to extend frequency range)
 uint32_t ftop; // top of current band filter
 uint32_t ftop_hi; // (reserved to extend frequency range)
 uint8_t band; // band#
 uint8_t atten; // Attenuation in dB
 uint8_t filter; // tuneable filter value
 uint8_t flags; // 0: 1 for preamp on,
 // 1: 1 if manual filter setting,
 // 2: 0=860MHz IF, 1=480MHz IF
} WR_RF;

typedef struct
{
 uint32_t freq; // LO module output freq
 uint32_t ddsfreq; // dds output freq
 uint32_t vcofreq; // vco output freq
 uint16_t pllN;
 uint16_t pllR;
 uint8_t index; // index in VCO lookup table
 uint8_t vconum; // which VCO
 uint8_t div; // always=0 => not used
 uint8_t flags; // 0: 0 for hi-side, 1 for lo-side
 // 1: settling speed
 // 2: 0 for 480MHz IF, 1 for 860 (LO2 only)
} WR_LO;

typedef struct
{
 uint8_t gain;
 uint8_t spare[3];
} WR_IF;

typedef struct
{
 uint32_t refclk;
 WR_RF rf;
 WR_LO lo1;
 WR_LO lo2;
 WR_IF if2;
 uint8_t phase[8];
} G5_STATUS;

typedef struct
{
 uint32_t LO1_PLL; // MASTER (i2c-0xC0)
 uint32_t LO1_DDS; // MASTER (not used in ver1)
 uint32_t LO2_PLL; // MASTER (i2c-0xC2)
 uint32_t LO2_DDS; // MASTER (CS-IF2)
 uint8_t RF_BAND; // SLAVES (SR LSB)
 uint8_t RF_ATTN; // SLAVES (SR MSB)
 uint8_t IF2_GAIN; // SLAVES (IF2-STB)
 uint8_t LO1_PCA; //MASTER (only for ver2)
 uint32_t LO1_DACS;
 uint32_t LO2_DACS;
 uint32_t SPURA;
 uint32_t SPURB;
} G5_HW;

#pragma pack(pop)

#ifdef __cplusplus
extern "C"
{
#endif

typedef int32_t (*G5_FIND_RADIOS)(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t
*RadiosFound);
typedef int32_t (*G5_OPEN_RADIOS)(G5_RADIO *Radios,uint32_t NumberOfRadios);
typedef void (*G5_CLOSE_RADIOS)(G5_RADIO *Radios,uint32_t NumberOfRadios);
typedef int32_t (*G5_SET_POWER)(G5_RADIO *Radios,uint32_t NumberOfRadios);
typedef int32_t (*G5_SET_FREQUENCY)(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t
Frequency,G5_STATUS *Status,G5_HW *Hw,uint8_t Force);
typedef int32_t (*G5_SET_RF_ATTN)(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t
Attn,G5_STATUS *Status,G5_HW *Hw);
typedef int32_t (*G5_SET_IF_GAIN)(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t
Gain,G5_STATUS *Status,G5_HW *Hw);
typedef int32_t (*G5_SET_PHASE)(G5_RADIO *Radios,uint32_t NumberOfRadios);
typedef int32_t (*G5_SET_PLL_SPEED)(G5_RADIO *Radios,uint32_t NumberOfRadios,uint8_t
SlowSpeed,G5_STATUS *Status,G5_HW *Hw);
typedef int32_t (*G5_GET_HW_STATUS)(G5_RADIO *Radios,uint32_t NumberOfRadios,uint32_t
*Status);
typedef int32_t (*G5_UPDATE_HW)(G5_RADIO *Radios,uint32_t NumberOfRadios,G5_HW *Hw);
#ifdef __cplusplus
};
#endif

extern G5_FIND_RADIOS G5_FindRadios;
extern G5_OPEN_RADIOS G5_OpenRadios;
extern G5_CLOSE_RADIOS G5_CloseRadios;
extern G5_SET_POWER G5_SetPower;
extern G5_SET_FREQUENCY G5_SetFrequency;
extern G5_SET_RF_ATTN G5_SetRFAttn;
extern G5_SET_IF_GAIN G5_SetIFGain;
extern G5_SET_PHASE G5_SetPhase;
extern G5_SET_PLL_SPEED G5_SetPllSpeed;
extern G5_GET_HW_STATUS G5_GetHwStatus;
extern G5_UPDATE_HW G5_UpdateHw;
uint8_t LoadG526API(void);
void UnloadG526API(void);
#endif

C file
#include "wrg526api.h"
#include <dlfcn.h>
#include <stdio.h>
#include <errno.h>

G5_FIND_RADIOS G5_FindRadios=NULL;
G5_OPEN_RADIOS G5_OpenRadios=NULL;
G5_CLOSE_RADIOS G5_CloseRadios=NULL;
G5_SET_POWER G5_SetPower=NULL;
G5_SET_FREQUENCY G5_SetFrequency=NULL;
G5_SET_RF_ATTN G5_SetRFAttn=NULL;
G5_SET_IF_GAIN G5_SetIFGain=NULL;
G5_SET_PHASE G5_SetPhase=NULL;
G5_SET_PLL_SPEED G5_SetPllSpeed=NULL;
G5_GET_HW_STATUS G5_GetHwStatus=NULL;
G5_UPDATE_HW G5_UpdateHw=NULL;

void *WRG526API=NULL;
#define GET_PROC(t,f) \
 f=(t)dlsym(WRG526API,"" #f); \
 if(f==NULL) \
 { \
 \
 fprintf(stderr,"Unable to load valid wrg526api.so library.\n"); \
 fprintf(stderr,"Unable to find " #f " procedure.\n");\
 dlclose(WRG526API); \
 WRG526API=NULL; \
 return 0; \
 }

//LoadG526API return 1 if success, 0 if failed
uint8_t LoadG526API(void)
{
 if(WRG526API==NULL)
 {
 WRG526API=dlopen("wrg526api.so",RTLD_LAZY);

 if(WRG526API==NULL)
 {
 fprintf(stderr,"Unable to load wrg526api.so shared library
(%s).\n",dlerror());
 return 0;
 }
 else
 {
 GET_PROC(G5_FIND_RADIOS,G5_FindRadios)
 GET_PROC(G5_OPEN_RADIOS,G5_OpenRadios)
 GET_PROC(G5_CLOSE_RADIOS,G5_CloseRadios)
 GET_PROC(G5_SET_POWER,G5_SetPower)
 GET_PROC(G5_SET_FREQUENCY,G5_SetFrequency)
 GET_PROC(G5_SET_RF_ATTN,G5_SetRFAttn)
 GET_PROC(G5_SET_IF_GAIN,G5_SetIFGain)
 GET_PROC(G5_SET_PHASE,G5_SetPhase)
 GET_PROC(G5_SET_PLL_SPEED,G5_SetPllSpeed)|
 GET_PROC(G5_GET_HW_STATUS,G5_GetHwStatus)
 GET_PROC(G5_UPDATE_HW,G5_UpdateHw)

 return 1;
 }
 }
 else
 {
 return 1;
 }
}

void UnloadG526API(void)
{
 if(WRG526API!=NULL)
 {
 dlclose(WRG526API);
 WRG526API=NULL;
 }
}

	WR-G526 API for Linux
	Introduction
	Software Requirements
	Typical usage
	To initialize
	To tune a new frequency
	To adjust the RF attenuator
	To adjust the IFGAIN
	To adjust the LO1 PLL settling speed
	To exit
	To check error status

	WRG526 API call summary
	G5_FindRadios
	G5_OpenRadios
	G5_CloseRadios
	G5_SetPower
	G5_SetFrequency
	G5_SetRFAttn
	G5_SetIFGain
	G5_SetPhase
	G5_GetHwStatus
	G5_UpdateHw

	WR-G526 API call detail
	Appendix A: WR-G526 data structure definition – C/C++ format
	Appendix B: Data structure detail
	Appendix C: Model variations
	Appendix D: Output Spectrum Inversion
	Appendix E: Loading API

